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INVERSE DOUBLY PERIODIC PROBLEM OF THE THEORY

OF BENDING OF A PLATE WITH ELASTIC INCLUSIONS

UDC 539.3F. A. Bakhyshov and V. M. Mirsalimov

Based on the balanced strength principle, a problem of determining the optimal interference for
fitting elastic inclusions into holes of an isotropic elastic plate weakened by a doubly periodic system
of circular holes is solved. A closed system of algebraic equations is derived, which allows solving
this problem. The resultant interference increases the load-carrying capacity of the composite plate
being bent.
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Introduction. The practice shows that multicomponent structures are more reliable and have a longer life-
time than homogeneous structures [1]. In designing composite materials, the load-carrying capacity of a perforated
plate with circular holes can be improved by reinforcing the contours of these holes with interference by elastic
disks made of another elastic material. These reinforcing elements have a moderate mass but significantly affect
the plate strength. The operational lifetime of a composite (multicomponent) structure depends on the distribution
of stresses in zones of interaction of its elements; therefore, optimal design of such structures, i.e., determining
their optimal characteristics, becomes extremely important. The workability of a composite plate can be improved
by design and technological methods, in particular, by changing the geometry (interference) of connection of its
elements. Similar problems of mechanics were solved in [2–9].

Formulation of the Problem. Let us consider an isotropic elastic plate weakened by a doubly periodic
system of circular holes of radius λ (λ < 1) whose centers are located at the points Pmn = mω1 + nω2 (m, n

= 0,±1,±2, . . .), where ω1 = 2, ω2 = 2h∗ exp (iα), h∗ > 0, and Imω2 > 0.
We have to determine the interference for fitting the inclusions into the holes on such a plate. It should be

noted that no solutions are available for problems of the elasticity theory on constructing a system of concentrators
(inclusions) such that the elastic field induced by this system could reduce the stress concentration in the perforated
plate. The plate is subjected to uniform bending by uniformly distributed constant moments (bending at infinity)

Mx = M∞
x , My = M∞

y , Hxy = 0.

The origin of the coordinate system is placed into the geometric center of the hole L0,0 in the mid-plane x0y of the
plate.

We assume that elastic disks made of a different elastic material are fitted with interference into the circular
holes of the plate Lmn (m, n = 0,±1,±2, . . .) by means of press fitting or thermal influence. The disks have a
greater size than the plate holes, and the disk thickness equals the plate thickness. Owing to the symmetry of the
boundary conditions and the geometry of the region occupied by the elastic medium, the stresses in the plate being
bent are doubly periodic functions with the fundamental periods ω1 and ω2.

The complex potentials that refer to the disk are denoted by Φ0(z) and Ψ0(z), and those that refer to the
plate are indicated by Φ(z) and Ψ(z). As the solution for the plate possesses the property of double periodicity, it
suffices to consider the conditions of plate–inclusion junction only along the contour of the basic hole L0,0.
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The boundary conditions for the problem considered have the following form [10]:

Φ(τ) + Φ(τ) − [τ̄Φ′(τ) + Ψ(τ)] e2iθ = Φ0(τ) + Φ0(τ) − [τ̄Φ′
0(τ) + Ψ0(τ)] e2iθ +g′(τ); (1)

εΦ(τ) + Φ(τ) − [τ̄Φ′(τ) + Ψ(τ)] e2iθ =
D0(1 − ν0)
D(1 − ν)

{ε0Φ0(τ) + Φ0(τ) − [τ̄Φ′
0(τ) + Ψ0(τ)] e2iθ}. (2)

Here τ = λ eiθ +mω1 + nω2 (m, n = 0,±1,±2, . . .), ν and ν0 are Poisson’s ratio of the plate and disk materials,
respectively, D and D0 are the cylindrical rigidities of the plate and the disk, respectively, g(τ) is the sought
interference function to be determined from an additional condition, ε = −(3+ν)/(1−ν), and ε0 = −(3+ν0)/(1−ν0).

The sought complex function g(τ) characterizes the jumps in displacements at the interface between the
media:

(u+ − u−) + i(v+ − v−) = g(τ) on Lmn.

The function g(τ) depends on the geometry of the inserted disks before their deformation and on the method used
to bring the points belonging to the disk and hole contours into contact.

According to the Kirchhoff theory, the problem considered reduces to finding two pairs of functions Φ0(z),
Ψ0(z), Φ(z), and Ψ(z) of the complex variable z = x + iy, which are analytical in the corresponding domains and
satisfy the boundary conditions (1) and (2).

To find the interference function, we use the condition of balanced strength on the contours of the circular
holes as a condition for determining the fitting interference [function g(θ)]. We have to determine the function
g(θ) such that the stress–strain field generated by interference in the course of loading of a composite body should
provide balanced strength on the contours of the circular holes in the bent plate. This additional condition allows
us to find the sought function g(θ) of press fitting interference.

Method of the Solution. We seek for the complex potentials Φ0(z) and Ψ0(z), which describe the stress–
strain state of the disk in the following form [11]:

Φ0(z) =
∞∑

k=0

a2kz2k, Ψ0(z) =
∞∑

k=0

a′
2kz2k. (3)

The complex potentials Φ(z) and Ψ(z), which describe the stress–strain state of the plate weakened by a
doubly periodic system of circular holes, are sought with allowance for the mean moments as [10]

Φ(z) = −M∞
x + M∞

y

4D(1 + ν)
+ Φ1(z), Ψ(z) =

M∞
y − M∞

x

2D(1 − ν)
+ Ψ1(z),

Φ1(z) = α0 +
∞∑

k=0

α2k+2
λ2k+2γ(2k)(z)

(2k + 1)!
, (4)

Ψ1(z) = β0 +
∞∑

k=0

β2k+2
λ2k+2γ(2k)(z)

(2k + 1)!
−

∞∑

k=0

α2k+2
λ2k+2Q(2k+1)(z)

(2k + 1)!
,

where γ(z) is the elliptical Weierstrass function and Q(z) is a special meromorphic function (see [10]).
We give the dependences [10] that should be satisfied by the coefficients in Eqs. (4). As the basic vector

and the basic moment of forces acting on the arc connecting two congruent points in the domain occupied by the
plate material have zero values, we obtain

α0 = (K0α2 + K1β2)λ2, β0 = (K2α2 + K3β2)λ2.

The expressions for the quantities Ki (i = 0, 1, 2, 3) can be found in [10].
From the conditions of symmetry about the coordinate axes, we find

Im α2k = 0, Im β2k = 0 (k = 0, 1, 2, . . .).

We can easily verify that presentations (4) determine the class of symmetric problems with a doubly periodic
distribution of stresses.

Without decreasing generality of the optimization problem posed, the sought function g′(τ) can be presented
as a segment of the Fourier series
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g′(τ) =
∞∑

k=−∞
Aint

2k ei2kθ ,

where

Aint
2k =

1
2π

2π∫

0

g′(τ) e−2kiθ dθ, Im Aint
2k = 0 (k = 0,±1,±2, . . .).

In this case, the optimization problem reduces to determining the coefficients Aint
2k (k = 0,±1,±2, . . .), which are

control parameters.
We denote the left side of the boundary condition (1) by f1 − if2 and assume that the function f1 − if2 on

the contour L0,0 is expanded into a Fourier series. By virtue of symmetry, this series has the form

f1 − if2 =
∞∑

k=−∞
A2k e2kiθ , Im A2k = 0 (k = 0,±1,±2, . . .). (5)

Using the boundary condition (1) and relations (3) and (5) and applying the method of power series, we obtain the
relations

a0 =
A0 − Aint

0

2
, a2k =

A−2k − Aint
−2k

λ2k
(k = 1, 2, . . .),

a′
2k = −(2k + 1)

A−2k−2 − Aint
−2k−2

λ2k
− A2k+2 − Aint

2k+2

λ2k
(k = 0, 1, 2, . . .),

determining the coefficients a2k and a′
2k of the functions Φ0(z) and Ψ0(z).

To determine the values of A2k, we consider the solution of the problem for the plate.
Using the complex potentials Φ0(z) and Ψ0(z), we can write the boundary conditions on the contour of the

circular hole (τ = λ eiθ) for the potentials Φ(z) and Ψ(z) after some transformations as

Φ(τ) + Φ(τ) − [τ̄Φ′(τ) + Ψ(τ)] e2iθ =
∞∑

k=−∞
A2k e2kiθ ; (6)

εΦ(τ) + Φ(τ) − [τ̄Φ′(τ) + Ψ(τ)] e2iθ = =
D0(1 − ν0)
D(1 − ν)

(1 + ε0

2
C0 +

∞∑

k=1

C2k e2kiθ +ε0

∞∑

k=1

C−2k e−2kiθ
)
. (7)

Here C2k = A2k − Aint
2k (k = 0,±1,±2, . . .).

The boundary condition (6) serves to determine the coefficients α2k and β2k, and the boundary condition
(7) is used to determine A2k.

Using the methods described in [10], we obtain three infinite systems of linear algebraic equations with
respect to α2k, β2k, and A2k:

α2j+2 =
∞∑

j=1

aj,kα2k+2 + bj (j = 0, 1, 2, . . .), aj,k = (2j + 1)γj,kλ2j+2k+2; (8)

γ∗
0,0 =

3
8

g2λ
2 + K2 +

(1 + ε)λ2K0K3

K4
+ ε

∞∑

i=1

(2i + 1)g2
i+1λ

4i+2

24i+4
,

γ∗
0,k = − (2k + 2)ρk+1

22k+2
+

(2k + 4)!gk+2λ
2

2!(2k + 2)!22k+4
+

(1 + ε)λ2K3gk+1

K422k+2
+ε

∞∑

i=1

(2j + 2i + 1)!gi+1gk+i+1λ
4i+2

(2k + 1)!(2i)!22k+4i+4
(k = 1, 2, . . .),

γj,0 = − (2j + 2)!ρj+1

22j+2
+

(2j + 4)!gj+2λ
2

(2)!(2j + 2)!22j+4
+

(1 + ε)λ2K0gj+1

[1 − (1 + ε)K1λ2]22j+2
(9)

+ ε

∞∑

i=1

(2j + 2i + 1)!gi+1gj+i+1λ
4i+2

(2j + 1)!(2i)!24j+4i+4
(j = 1, 2, . . .),
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γj,k = γk,j = − (2j + 2k + 2)!ρj+k+1

(2j + 1)!(2k + 1)!22j+2k+2
+

(2j + 2k + 4)!gj+k+2λ
2

(2j + 2)!(2k + 2)!22j+2k+4
+

gj+1gk+1λ
2

22j+2k+4

[
1 +

(1 + ε)2K1λ
2

1 − (1 + ε)K1λ2

]

+ ε
∞∑

i=0

(2j + 2i + 1)!(2k + 2i + 1)!gj+i+1gk+i+1λ
4i+2

(2j + 1)!(2k + 1)!(2i + 1)!(2i)!22j+2k+4i+4
(j, k = 1, 2, . . .).

The quantities γj,k entering system (8) are determined by Eqs. (9) with ε = 1. The values of γ∗
j,k are found

by Eqs. (9) with ε = −(3 + ν)/(1 − ν). The constants β2k are determined from the following relations:

β2 =
1

1 − 2K1λ2

(
− A0 +

M∞
x + M∞

y

2D(1 + ν)
+ 2λ2α2K0 + 2

∞∑

k=1

gk+1λ
2k+2α2k+2

22k+2

)
,

β2j+4 = (2j + 3)α2j+2 +
∞∑

k=0

(2j + 2k + 3)!gj+k+2λ
2j+2k+4α2k+2

(2j + 2)!(2k + 1)!22j+2k+4
− A−2j−2;

(10)

A2j+2 =
1 − ε

1 − µ0/µ
α2j+2 − µ0

µ(1 − µ0/µ)
Aint

2j+2,

A−2j =
1 − ε

1 − ε0µ0/µ

∞∑

k=0

rj,kλ2k+2j+2α2k+2 − ε0µ0

µ(1 − ε0µ0/µ)
Aint

−2j (j = 0, 1, 2, . . .),

A0 =
∞∑

k=0

Q0,kλ2k+2A2k+2 + Q0

M∞
x + M∞

y

4D(1 + ν)
−

∞∑

k=0

Q′
0,kλ2k+2Aint

2k+2 −
(1 + ε0)µ0/µ

(1 − 2K1λ2)Q
Aint

0 ;

A2j =
∞∑

k=0

dj,kA2k+2 + Tj (j = 0, 1, 2, . . .), (11)

where

Q0,k = r0,k
1 − µ0/µ

(1 − 2K1λ2)Q
, rj,k =

(2j + 2k + 1)!gj+k+1

(2j)!(2k + 1)!22j+2k+2
,

Q′
0,k = −r0,k

µ0/µ

(1 − 2K1λ2)Q
, Q0 =

ε − 1
(1 − 2K1λ2)Q

,

Q = −µ0

µ

1 − ε0

2
+

1 + ε

2
+

1 − ε

1 − 2K1λ2
, gj+k+1 =

∑

m,n

′ 1
T 2j+2k+2

,

ρj =
∑

m,n

′ T

T 2j+1
, T =

1
2

Pmn,

dj,k =
(2j + 1)λ2j+2k+2Sj,k

γ
, Tj =

tj
γ

, Sj,k =
1 − µ/µ0

1 − ε

(
γj,k +

µ0

µε0
γ∗

j,k + Dj,k

)
,

Dj,k =
gj+1gk+1λ

2

22j+2k+4
η
( µ

µ0

)
, D0,0 = λ2K2

0η
( µ

µ0

)
, η

( µ

µ0

)
=

C

C1
,

D0,k = λ2K2
0

gk+1

22k+2
η
( µ

µ0

)
, Tj = T ∗

j + Hj ,

C =
1 + ε0

ε0

1
1 − (1 + ε)K1λ2

− 2
1 − 2K1λ2

, T ∗
j =

t∗j
γ

,

C1 = 1 − (1 − 2K1λ
2)

( µ

µ0

1 + ε0

1 − ε
− 1 + ε

1 − ε

)
, Hj =

hj

γ
,
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t∗0 =
M∞

y − M∞
x

2(1 − ν)D

(
1 +

µ0

ε0µ

)
, t∗j =

M∞
x + M∞

y

4(1 + ν)D
(2j + 1)gj+1

22j+2
λ2j+2η1

( µ

µ0

)
,

η1

( µ

µ0

)
=

C2

C3
, C2 =

(
1 − µ0

ε0µ

)(
1 + ε − µ

µ0
(1 + ε0)

)
,

C3 = 1 − (1 + ε)K1λ
2 − µ

2µ0
(1 + ε0)(1 − 2K1λ

2),

γ =
(1 − µ/µ0)(1 − εµ0/(ε0µ))

1 − ε
+

1 − ε0

ε0
, h0 = −1 − ε0

ε0

∞∑

k=0

gk+2λ
2k+4

22k+4
Aint

−2k−2,

hj =
(2j + 1)gj+1λ

2j+2

22j+2
(1 − ε0)

[ µ

2Qµ0

( 1
1 − 2K1λ2

− 1 + ε0

2(1 − (1 + ε)K1λ2)ε

)

− 1
2(1 − (1 + ε)K1λ2)ε

]
(−Aint

0 ) +
1 − ε0

ε0

∞∑

k=0

(2j + 2k + 3)!gj+k+2λ
2j+2k+4

(2j)!(2k + 3)!22j+2k+4
Aint

2k+2

(the prime at the sum indicates that the indices m = n = 0 are eliminated during summation).
In the case of regular meshes, which are of greatest interest for practice, system (8), (10), (11) can be

simplified.
For a triangular mesh of holes [ω1 = 2 and ω2 = 2 exp (iπ/3)], system (11) acquires the form

A6j =
∞∑

k=1

d3j−1,3k−1A6k + T3j−1 (j = 1, 2, . . .).

For a quadratic mesh of holes (ω1 = 2 and ω2 = 2i), system (11) takes the form

A4j =
∞∑

k=1

d2j−1,2k−1A4k + T2j−1 (j = 1, 2, . . .).

Systems (8), (10), and (11) obtained for a prescribed interference completely determine the solution of the
problem of the stress–strain state of an elastic plate reinforced by disks made of another elastic material.

Until now, the interference was formally considered to be given. Let us return to the problem of optimization
and find the coefficients Aint

2k . For this purpose, we construct the missing equations for closing systems (8), (10),
and (11).

Using the formulas [11]
Mθ + Mρ = −4D(1 + ν) Re Φ(z),

Mθ − Mρ + 2iHρθ = 2D(1 − ν)[z̄Φ′(z) + Ψ(z)] e2iθ,

we find the bending moment Mθ on the contour of the hole in the plate |τ | = λ:

Mθ =
1
2

(M∞
x + M∞

y ) +
1
2

(M∞
y − M∞

x ) cos 2θ

− 2D(1 + v)
(
α0 +

∞∑

k=0

α2k+2 cos (2k + 2)θ +
∞∑

k=0

α2k+2

∞∑

j=0

λ2k+2j+2rj,k cos 2jθ
)

+ D(1 − ν)
(
β0 cos 2θ −

∞∑

k=0

(2k + 2)α2k+2 cos (2k + 2)θ +
∞∑

k=0

∞∑

j=0

α2k+2λ
2k+2j+22jrj,k cos 2jθ

+
∞∑

k=0

β2k+2 cos 2kθ +
∞∑

k=0

∞∑

j=0

β2k+2λ
2k+2j+2rj,k cos (2j + 2)θ

−
∞∑

k=0

∞∑

j=0

(2k + 2)α2k+2λ
2k+2j+2Sj,k cos (2j + 2)θ

)
. (12)
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In Eq. (12), the coefficients α2k and β2k depend on Aint
2k , which are coefficients of the Fourier series of the sought

interference function. To construct the missing equations that would allow determining these coefficients, we use
the least squares technique, i.e., we choose the values of the coefficients Aint

2k that ensure minimization of stresses
on the hole contour:

N∑

i=1

[Mθ(θi) − M0]2 → min.

Here M0 is the optimal value of the bending moment on the hole contour to be determined in solving the problem.
We divide the segment [0, 2π] into N identical parts: ∆θ = 2π/N . At the division points (nodes) θi, we

calculate the values of the function Mθ(θi). The right side of the expression

U =
N∑

i=1

[Mθ(θi) − M0]2

is a function depending on the control parameters Aint
2k and M0 and explicitly depending on the coefficients α2k and

β2k. In turn, the coefficients α2k and β2k depend on the coefficients Aint
2k [see systems (8), (10), and (11)].

Using Eqs. (10), we eliminate the coefficients β2k from Eqs. (12).
According to the least squares technique, the best coefficients α2k(Aint

2k ) and M0 are those that ensure the
minimum values of the function U . Using the necessary condition of the extreme point of a function of several
variables, we obtain an infinite system of equations for determining the values of M0 and α2k(Aint

2k ):

∂U

∂M0
= 0,

∂U

∂α2k
= 0 (k = 1, 2, . . .). (13)

System (13) is simplified because the function Mθ(θ, α2k) (k = 1, 2, . . .) is linear with respect to the param-
eters α2k and can be presented in the form

Mθ(θ, α2k) = f0 + α2f2(θ) + α4f4(θ) + α6f6(θ) + . . . + α2k+2f2k+2(θ) + . . . .

The remaining quantities (partial derivatives) are readily found. With allowance for the relations obtained, we write
the linear system of equations with respect to the unknowns M0, α2, α4, . . . , α2k+2, . . . :

−NM0 + α0

N∑

i=1

f2(θi) + α4

N∑

i=1

f4(θi) + . . . + α2k+2

N∑

i=1

f2k+2(θi) + . . . = −
N∑

i=1

f0(θi),

α2(f2, f2) + α4(f2, f4) + . . . + α2k+2(f2, f2k+2) + . . . = (f2, Y ),

α2(f4, f2) + α4(f4, f4) + . . . + α2k+2(f4, f2k+2) + . . . = (f4, Y ),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(14)

α2(f2k+2, f2) + α4(f2k+2, f4) + . . . + α2k+2(f2k+2, f2k+2) + . . . = (f2k+2, Y ),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(k = 0, 1, 2, . . .).

In this system,

(fj , fk) =
N∑

i=1

fj(θi)fk(θi), (fj , Y ) =
N∑

i=1

fj(θi)Yi, Yi = M0 − f0(θi).

Analysis of Results. The infinite system (14) together with systems (8), (10), and (11) allows one to
determine the stress–strain state of the plate, the optimal interference for fitting elastic disks into the holes, and
the optimal value of the normal tangential bending moment on the contour of the hole in the plate. These systems,
however, are rather cumbersome. As 0 � λ < 1, and the parameter λ in high powers enters these systems, the
latter can be significantly simplified. In solving most of the practical problems, each system can be reduced to two
or three equations; nevertheless, the results for the operating ranges of the hole radius λ will be fairly accurate.
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TABLE 1
Calculated Coefficient Aint

2k for a Triangular Mesh of Holes

λ
Aint

0 Aint
6 Aint

12 Aint
18

OB AB OB AB OB AB OB AB

0.2 0.071 0.062 0.043 0.034 0.019 0.011 0.006 0.003
0.3 0.094 0.078 0.062 0.048 0.023 0.017 0.009 0.005
0.4 0.117 0.102 0.078 0.069 0.034 0.021 0.012 0.009
0.5 0.136 0.122 0.080 0.071 0.041 0.032 0.015 0.011
0.6 0.159 0.141 0.095 0.084 0.053 0.039 0.019 0.013
0.7 0.172 0.158 0.092 0.086 0.066 0.055 0.027 0.021

Note. OB and AB refer to one-sided and all-sided bending, respectively.

TABLE 2
Calculated Coefficient Aint

2k for a Quadratic Mesh of Holes

λ
Aint

0 Aint
4 Aint

8 Aint
12

OB AB OB AB OB AB OB AB

0.2 0.082 0.074 0.051 0.043 0.018 0.014 0.007 0.004
0.3 0.108 0.096 0.067 0.061 0.025 0.020 0.008 0.005
0.4 0.139 0.124 0.086 0.072 0.032 0.018 0.011 0.009
0.5 0.151 0.143 0.093 0.084 0.038 0.028 0.015 0.011
0.6 0.173 0.158 0.108 0.091 0.046 0.033 0.017 0.015
0.7 0.190 0.182 0.116 0.104 0.053 0.042 0.022 0.018

Note. OB and AB refer to one-sided and all-sided bending, respectively.

For the numerical implementation of the method described above, we solved the linear algebraic systems
(8), (10), (11), and (14) by the method of truncation of algebraic systems. We examined one-sided bending of the
plate by constant moments M∞

y (M∞
x = 0) and all-sided bending by the moments M∞

x = M∞
y = M for regular

meshes. The truncated systems were solved by the Gaussian method with the basic element chosen depending on
the hole radius.

The coefficients Aint
2k calculated for different values of the hole radius are listed in Table 1 for a triangular

mesh of holes and in Table 2 for a quadratic mesh of holes. The values used in calculations were ν = 0.30 and
µ = 2.5 · 105 MPa for the plate and ν0 = 0.32 and µ0 = 3.6 · 105 MPa for the inclusion.

The case of annular disks is considered in a similar manner: the complex potentials Φ0(z) and Ψ0(z) are
sought in the form [11]

Φ0(z) =
∞∑

k=−∞
a2kz2k, Ψ0(z) =

∞∑

k=−∞
a′
2kz2k

and the boundary condition of the absence of forces on the inner contour of the annular disk is additionally imposed.
The problem with different interference criteria can also be considered in a similar manner.
It should be noted that the value of M0 can be chosen in advance, on the basis of the load-carrying capacity

of the plate. The calculations show, however, that the sum of squared deviations decreases in determining the
unknown optimal values of Mθ, i.e., the search results are more accurate.
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